Neonatal hypoxia-ischemia differentially upregulates MAGUKs and associated proteins in PSD-93-deficient mouse brain.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Postsynaptic density (PSD)-93 and PSD-95 are the major membrane-associated guanylate kinases (MAGUKs) at excitatory synapses of the brain linking the N-methyl-d-aspartate receptor (NMDAR) with neuronal nitric oxide synthase (nNOS), which contributes to cell death after neonatal hypoxia-ischemia (HI). We investigated whether deletion of PSD-93 would dissociate the NMDAR from nNOS and be neuroprotective. METHODS Postnatal day 7 wild-type (+/+), heterozygous (+/-), and homozygous (-/-) PSD-93 knockout mice were subjected to HI by permanent ligation of the right carotid artery, followed by exposure to 8% O2/92% N2 for 1 hour. Brains were scored 5 days later for damage with cresyl violet and iron stains. Western blot and coimmunoprecipitation were used to determine the expression and association of the major PSD proteins. RESULTS There was no significant difference between PSD-93 (-/-) and (+/+) mice in mortality or degree of brain injury. In the absence of PSD-93, PSD-95 still interacted with NR2B and nNOS. Under physiological conditions, PSD-95, nNOS, NR2A, and NR2B were unaltered in the (-/-) pups. However, at 24 hours after HI, protein expression of PSD-95, nNOS, and NR2A but not NR2B was markedly higher in the (-/-) than in the (+/+) pups. In (+/+) pups, HI resulted in decreased expression of NR2A but not NR2B in cortex and decreased NR2A and NR2B expression in hippocampus, but this reduction was not observed in (-/-) pups. CONCLUSIONS PSD-93 is not essential for baseline synaptic function but may participate in regulation of NMDAR-associated signaling pathways after HI injury. Deletion of PSD-93 alone does not provide neuroprotection after neonatal HI, possibly a result, in part, of upregulation of PSD-95. MAGUKs may substitute for one another, allowing normal NMDAR function in the postnatal period.
منابع مشابه
Neonatal Hypoxia-Ischemia Differentially Upregulates MAGUKs and Associated Proteins
Deficient Mouse Brain − in PSD-93 Neonatal Hypoxia-Ischemia Differentially Upregulates MAGUKs and Associated Proteins Print ISSN: 0039-2499. Online ISSN: 1524-4628 Copyright © 2003 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Stroke doi: 10.1161/01.STR.0000102560.78524.9D 2003;34:2958-2963; origina...
متن کاملPSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum.
Membrane-associated guanylate kinases (MAGUKs) are abundant postsynaptic density (PSD)-95/discs large/zona occludens-1 (PDZ)-containing proteins that can assemble receptors and associated signaling enzymes at sites of cell-cell contact, including synapses. PSD-93, a postsynaptic neuronal MAGUK, has three PDZ domains that can bind to specific ion channels, including NMDA delta2 type glutamate re...
متن کاملLocalization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A.
Postsynaptic density-93 (PSD-93)/Chapsyn-110 is a member of the membrane-associated guanylate kinase (MAGUK) family of PDZ domain-containing proteins. MAGUKs are widely expressed in the brain and are critical elements of the cytoskeleton and of certain synapses. In the ultrastructural studies that are described here, PSD-93 localizes to both postsynaptic densities and dendritic microtubules of ...
متن کاملNeuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...
متن کاملADAM22, a Kv1 channel-interacting protein, recruits membrane-associated guanylate kinases to juxtaparanodes of myelinated axons.
Clustered Kv1 K(+) channels regulate neuronal excitability at juxtaparanodes of myelinated axons, axon initial segments, and cerebellar basket cell terminals (BCTs). These channels are part of a larger protein complex that includes cell adhesion molecules and scaffolding proteins. To identify proteins that regulate assembly, clustering, and/or maintenance of axonal Kv1 channel protein complexes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 34 12 شماره
صفحات -
تاریخ انتشار 2003